

Муниципальное автономное общеобразовательное учреждение Нижнетуринского городского округа «Средняя общеобразовательная школа № 3»

Принято

на заседании Педагогического совета протокол от 29.09.2024 г. № 1

Согласовано

Заместитель директора по УВР Хайруллина Н.Ф. 30.08.2024 г.

Утверждено

Директор Волкова С.В. Приказ от 02.09. 2024г. № 349

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ внеурочной деятельности «Робототехника» 5-6 классы

Составитель: учитель физики Невтеева Р.Р.

Нижнетуринский городской округ 2024

Оглавление

Раздел 1. Комплекс основных характеристик образования	
1.1. Пояснительная записка	3
1.2. Цель и задачи программы	5
1.3. Содержание программы	6
Раздел 2. Комплекс организационно-педагогических условий	
2.1. Календарный учебный график	12
2.2. Условия реализации программы	12
2.3. Формы аттестации	13
2.4. Оценочные материалы	
2.5. Методические материалы	14
Приложение 1	

Раздел 1. Комплекс основных характеристик образования.

1.1 Пояснительная записка

Программа внеурочной деятельности «Робототехника» разработана на основе:

- -Федерального Закона от 29.12.2012 года №273-ФЗ «Об образовании в Российской Федерации»;
- -Письма Министерства образования и науки Российской Федерации от 18 ноября 2015 года № 09-3242 «О направлении информации «Методические рекомендации по проектированию дополнительных общеобразовательных программ (включая разноуровневые программы)»
- -Приказа Министерства просвещения РФ от 11 ноября 2018 г. № 196 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам"
- -Приказа Минпросвещения Росси от 05.09.2019 № 470 № «О внесении изменений в Порядок организации и осуществления образовательной деятельности по дополнительным образовательным программам, утвержденный приказом Минпросвещения России от 09.11.2018 № 196»
- -Приказа Министерства просвещения Российской Федерации от 30 сентября 2020 г. № 533 «О внесении изменений в Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Минпросвещения России от 09.11.2018г № 196»
- -Постановления Главного Государственного санитарного врача «Российской Федерации «Об утверждении санитарных правил СП 2.4-3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»
- -Приказа ГАУ ДПО «АмИРО» от 15.09.2020г № 273 «Об утверждении методических рекомендаций по организации и реализации учебной работы по дополнительным общеобразовательным программам»
- Устав и локальные акты учреждения.

Общеобразовательная общеразвивающая дополнительная программа «Механика и программирование в робототехнике» составлена для организации дополнительного образования обучающихся СОШ.

В рамках данной программы обучающимися реализуются практические навыки работы на высокотехнологическом оборудовании. Обучающиеся познакомятся с теорией решения изобретательских задач, основами инженерии, выполнят работы с электронными компонентами, поймут особенности и возможности программирования и способы его практического применения. Определят наиболее интересные направления для дальнейшего практического изучения.

Актуальность программы обусловлена социальным заказом общества на технически грамотных специалистов в области робототехники и ІТ-технологий, максимальной эффективностью развития технических навыков со школьного возраста; передачей сложного технического материала в простой доступной потребностей реализацией личностных И жизненных реализацией проектной деятельности школьниками на базе современного оборудования. А так же повышенным интересом детей школьного возраста к робототехнике И ІТ-технологиям. Дополнительное образование обладает большим потенциалом В развитии и подготовке личности ребенка самоопределению и самореализации в этих условиях.

Программа имеет **техническую направленность**, прививает интерес учащихся к области механики и автоматизированных систем, обладает целым рядом возможностей и способствует популяризации профессии инженер.

Новизна данной программы заключается в обучение обучающихся на высокотехнологичном оборудование с применением практических знаний и использование полученных знаний.

Педагогическая целесообразность данной программы заключается:

- в успешном развитии у обучающихся навыков практической направленности при изучении основ робототехники;
- в овладении компьютерными и информационными технологиями в процессе обучения;
 - в формировании навыков проектной деятельности;
 - в профессиональном самоопределении подростков.

Адресат программы: Программа нацелена на обучающихся в возрасте от 11 до 13 лет.

Возрастные особенности. Занятия носят гибкий характер с учетом предпочтений, способностей и возрастных особенностей обучающихся. Построение занятия включает в себя фронтальную, индивидуальную и групповую работу, а также некоторый соревновательный элемент.

Количество учащихся в группе — 12 человек.

Условия набора учащихся: Комплектация состава детского объединения осуществляется в возрастную группу 11-13 лет из Рекомендуемый минимальный состав группы: 12 человек. Группы формируются из обучающихся проявляющие интерес к механике и робототехнике. Специальных знаний при этом не требуется. Занятия проводятся с учетом психофизиологических возможностей учащихся и возрастных особенностей.

Кол-во групп: 1

Сроки реализации программы. 2024 - 2025 учебный год.

Режим занятий. Учебные занятия проводятся в групповой форме два раза в неделю по 2 часа, с перерывом на отдых, содержат теоретическую и

1.2. Цель и задачи программы

<u>**Цель программы:**</u> развитие пространственного мышления детей, навыков командного взаимодействия, моделирования, электроники, прототипирования, программирования, освоения «hard» и «soft» компетенций и передовых технологий в области конструирования, мехатроники, электроники, робототехники, компьютерных и информационных технологий.

Задачи программы:

- формировать знаний обучающихся об истории развития отечественной и мировой техники, её создателях, о различных направлениях изучения робототехники, электроники, технологий искусственного интеллекта, компьютерных технологий;
- изучать принципы работы робототехнических элементов, состояние и перспективы робототехники в настоящее время;
- осваивать «hard» и «soft» компетенции; формировать умение ориентироваться на идеальный конечный результат;
- обучать владению технической терминологией, технической грамотности;
 - формировать умение пользоваться технической литературой;
 - формировать целостную научную картину мира;
- изучать приемы и технологии разработки простейших алгоритмов и систем управления, машинного обучения, технических устройств и объектов управления;
 - формировать интерес к техническим знаниям;
- развивать у обучающихся техническое мышление, изобретательность, образное, пространственное и критическое мышление;
 - формировать учебную мотивацию и мотивацию к творческому поиску;
 - развивать волю, терпение, самоконтроль, внимание, память, фантазию;
- развивать способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- стимулировать познавательную активность обучающихся посредством включения их в различные виды конкурсной деятельности;
- воспитывать дисциплинированность, ответственность, самоорганизацию;
 - формировать организаторские и лидерские качества;
 - воспитывать трудолюбие, уважение к труду;
 - формировать чувство коллективизма и взаимопомощи;
- воспитывать чувство патриотизма, гражданственности, гордости за достижения отечественной науки и техники.

Отличительные особенности данной программы

Данный курс носит технический характер.

Кроме того, следует выделить базовые принципы, определяющие особенность данной программы:

- принцип интегративности (подразумевает объединение разрозненных знаний из естественно-научных, гуманитарных и технических дисциплин в единое целое);
- *принцип деятельностного подхода* (знания открываются обучающимися и проверяются на практике);
- принцип компетентностного подхода (под компетентностью нами понимается способность системно применять знания и умения для самостоятельной и коллективной деятельности при решении проблем).
- принцип формирования инженерного мышления (применения полученных технических знаний на практике);
- *принцип активной жизненной позиции* (знания, полученные на занятиях, используются для решения технических проблем через командную работу, участие в конкурсах, олимпиадах).

1.3. Содержание программы

Учебный план

№ п/п	Наименование тем	Форма проведения занятий		Ито го	Форма контроля			
		теория	практика					
1	Знакомство. Инструктаж по технике безопасности.	1		1	Опрос			
2	Манипуляторы	16	20	36				
2.1	Манипулятор с L- образной стрелой	4	4	8	Внутренний контроль/опрос/ наблюдение			
2.2	Манипулятор с Z- образной стрелой	4	4	8	Внутренний контроль/наблюдение			
2.3	Комбинированный манипулятор	4	4	8	Внутренний контроль/тест конструкций			
2.4	Рука манипулятор	2	4	6	Внутренний контроль/наблюдение			
2.5	Рука манипулятор	2	4	6	Внутренний контроль/тест конструкций			
3	Сборка по	14	36	50	конструкций			

	инструкции				
3.1	Шагающий робот	2	6	8	Внутренний контроль/ опрос
3.2	Принтер	2	6	8	Внутренний контроль/тест
3.3	Простой автомобиль	2	6	8	Внутренний контроль/отчет
3.4	Игра	2	6	8	Внутренний контроль/тест конструкций
3.5	Машина для определения цвета и размера балки.	4	6	10	Внутренний контроль/тест конструкций
3.6	Оружие	2	6	8	Внутренний контроль/тест
4	Конструирование	18	32	50	
4.1	Сейф_1	4	6	10	Внутренний контроль/наблюдение
4.2	Сейф_2	4	6	10	Внутренний контроль/тест конструкций
4.3	Коробка передач	4	6	10	Внутренний контроль/наблюдение/отчет
4.4	Автомобиль_1	3	7	10	Внутренний контроль/тест конструкций
4.5	Автомобиль_2	3	7	10	Внутренний контроль/отчет
Ито	г:	34	102	136	

Содержание учебного плана

1 Знакомство. Инструктаж по технике безопасности.

2 Манипуляторы

2.1 Манипулятор с L-образной стрелой

Манипуляторы со стрелой на 1 большом и 1 среднем моторе.

Конструкция с L-стрелой.

Переместить кубик с одного места на другое, вдали от робота. Переместить с земли на гору.

2.2 Манипулятор с Z-образной стрелой

Конструкция с Z-стрелой.

Переместить кубик с одного места на другое, вдали от робота. Переместить с земли на гору.

2.3 Комбинированный манипулятор

Комбинированный манипулятор на 2 больших моторах.

2.4 Рука манипулятор

Что такое рука манипулятор? Конструкция на 3-4 моторах. Конструирование руки на 3-х моторах.

2.5 Рука манипулятор

Повторение руки манипулятора.

Соревнование манипуляторов. Конструирование руки под соревнование.

Программирование. Переместить 3-4 кубика из разных зон склада.

3 Сборка по инструкции

3.1 Шагающий робот

Сборка DINOR3X по инструкции. Программирование на движение.

3.2 Принтер

Сборка BANNER PRINT3R по инструкции. Написание программы печати одного слова

3.3 Простой автомобиль

Сборка RAC3 TRACK по инструкции. Программирование поворота, разворота, парковки.

3.4 Игра

Сборка EV3GAME по инструкции. Программирование одного сценария игры.

3.5 Машина для определения цвета и размера балки.

Сборка MR-B3AM по инструкции. Написание программы по определению цвета и размера балки EV3.

3.6 Оружие

Создание арбалета. Стрельба по мишеням.

4 Конструирование

4.1 Сейф_1

Конструирование простого сейфа с механическим и электронным замком.

4.2 Сейф_2

Доработка сейфа.

4.3 Коробка передач

Конструкция двухступенчатой и четырехступенчатой коробки передач

4.4 Автомобиль 1

Конструкция автомобиля. Рулевая система. Кардан. Независимая подвеска.

4.5 Автомобиль_2

Доработка конструкции. Пульт управления автомобилем. Программирование конструкции.

Проезд полосы препятствий.

1.4. Планируемые результаты освоения дополнительной образовательной программы

Инженерно-компетентная личность с активной гражданской позицией, владеющая умениями работы в команде.

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;

- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
 - воспитание чувства справедливости, ответственности;
- формирование профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.
- формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культур;
- освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками;

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- -умение принимать и сохранять учебную задачу;
- -умение планировать последовательность шагов алгоритма для достижения цели;
- -умение ставить цель (создание творческой работы), планировать достижение этой цели;
 - -умение осуществлять итоговый и пошаговый контроль по результату;
 - -способность адекватно воспринимать оценку учителя и сверстников;
 - -умение различать способ и результат действия;
- -умение вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок;
 - -умение в сотрудничестве ставить новые учебные задачи;
- -способность проявлять познавательную инициативу в учебном сотрудничестве;
- -умение осваивать способы решения проблем технического характера в жизненных ситуациях;
- -умение оценивать получающийся технический продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

-умение осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;

- -умение использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
 - -умение ориентироваться в разнообразии способов решения задач;
- -умение осуществлять анализ объектов с выделением существенных и несущественных признаков;
 - -умение проводить сравнение, классификацию по заданным критериям;
- -умение строить логические рассуждения в форме связи простых суждений об объекте;
 - -умение устанавливать аналогии, причинно-следственные связи;
- -умение моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- -умение синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- -умение выбирать основания и критерии для сравнения, классификации объектов;

Коммуникативные универсальные учебные действия:

- -умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
 - -умение выслушивать собеседника и вести диалог;
- -способность признавать возможность существования различных точек зрения и права каждого иметь свою;
- -умение планировать учебное сотрудничество с учителем и сверстниками: определять цели, функций участников, способов взаимодействия;
- -умение осуществлять постановку вопросов: инициативное сотрудничество в поиске и сборе информации;
- -умение разрешать конфликты: выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- -умение управлять поведением партнера: контроль, коррекция, оценка его действий;
- -умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
 - -владение монологической и диалогической формами речи.

Предметные результаты:

В результате освоения программы обучающиеся должны знать:

- виртуальное и натурное моделирование технических объектов и технологических процессов с применением робототехнических систем;
- умение создавать, применять и преобразовывать знаки и символы, модели, схемы для решения учебных и познавательных задач;

- умение конструировать различные системы, в том числе, использующие интерфейс «Мозг-компьютер»;
- основы работы в текстовом редакторе и программе для создания презентаций;
 - использование приводов с отрицательной обратной связью;
 - применение инфракрасных датчиков для определения расстояния;
- сборка конструкций с использованием винтовых и невинтовых соединений;
 - измерение расстояния;
 - составление алгоритма программы;
 - написание кода программы согласно алгоритму;
 - получение и обработка показаний цифровых и аналоговых датчиков;
 - управление сервоприводом;
 - расчет освещенности;
 - управление светодиодной лентой;
 - применение модуля реального времени для работы с календарем;

В результате освоения программы, обучающиеся должны уметь:

- работать в команде (работа в общем ритме, эффективное распределение задач и др.);
- ориентироваться в информационном пространстве, продуктивно использовать техническую литературу для поиска сложных решений;
- ставить вопросы, связанные с темой проекта, выбор наиболее эффективных решений задач в зависимости от конкретных условий;
 - критически мыслить;
- проявлять техническое мышление, познавательную деятельность, творческую инициативу, самостоятельность;
 - творчески решать технические задачи;
- применять теоретические знания по физике, информатике для решения задач в реальном мире;
- правильно организовывать рабочее место и время для достижения поставленных целей.

Продуктовые

• не менее одного выполненного продукта проекта разработанного в команде.

Раздел 2. Комплекс организационно-педагогических условий.

2.1 Календарный учебный график по внеурочной деятельности «Робототехника » на 2024 - 2025 учебный год (см. приложение 1)

Режим организации занятий по данной внеурочной программе определяется календарным учебном графиком и соответствует нормам, утвержденным «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» № 28 от 28.09.2020 (СП 2.4.43648 -20, пункт 3.6.2,)

Срок обучения	1 год
Начало учебного года	01.09.2024
Окончание учебного года	31.05.2025
Количество учебных недель	34 недель
Количество часов за весь период обучения	136часа
Продолжительность занятия (академический	
час)	40мин
Периодичность занятий	2 раза в неделю по 2 часа
Промежуточная аттестация	

2.2. Условия реализации программы

Материально-техническое обеспечение

Для проведения занятий необходимо иметь следующее оборудование:

- Персональный компьютер/ноутбук 3 шт.;
- Проектор с экраном/ ТВ с возможностью подключения к ноутбуку 1 шт;
 - МФУ (Копир, принтер, сканер), А4, ч/б, лазерный 1 шт.;
 - Робототехнический наборов. 2 шт

Кадровое обеспечение: Реализацию внеурочной программы «Робототехника» осуществляют педагог МАОУ НТГО «СОШ№3».

Информационное -методическое обеспечение

– мини-конференция по защите проектов, кейс, выставка, внутригрупповой конкурс (соревнования), презентация (самопрезентация) проектов обучающихся и др., конкурс проектов обучающихся с целью отбора в проектные команды на постоянной основе.

2.3. Формы аттестации

Формы подведения итогов обучения защита группового проекта.

Оценка развития личностных качеств обучающегося производится по трём уровням:

- «высокий»: положительные изменения личностного качества воспитанника в течение учебного года признаются как максимально возможные для него;
- «средний»: изменения произошли, но воспитанник потенциально был способен к большему;
 - «низкий»: изменения не замечены.

Результатом усвоения обучающимися программы являются: устойчивый интерес к занятиям робототехникой, результаты достижений в массовых мероприятиях различного уровня.

2.4. Оценочные материалы

Механизм оценки уровня освоения программы

Vpuropuu ououku	Показ	Уровни
Критерии оценки	атели	(баллы)
Практические умения и навыки	1-5	Низкий
Умение осуществлять учебно-	1-5	- пизкии 1-2
исследовательскую деятельность		
Владение ПК	1-5	Средний 3-4
Умение публично выразить свою	1-5	Высокий
позицию		5
Умение работать в команде	1-5	3

Критерии оценивания защиты проекта

Критерии	Показатели	Баллы 0;0,5; 1
Компетентность	Владение содержанием	
докладчика	работы	
	Глубина раскрытия темы	
	Достоверность выводов и	
	результатов	
Креативность	Интерпретация	
	материала. Оценка	
	собственной работы,	
	достижений	
	Решение проблемных	
	ситуаций	
Коммуникативно	Грамотно выстроено	
СТЬ	выступление. Грамотность	
	речи	
	Четко	
	сформулированные ответы на	
	вопросы	

Использование	Презент					
презентационных	материалы	оформлен	Ы			
материалов	грамотно					
	Презент	гационные				
	материалы	встроены	В			
	выступление	выступление				
	c	оптимальны	M			
	распределени	ем времени				
Критерии выставле	Критерии выставления баллов					
0 – не прослеживается;						
0,5 – прослеживается не четко;						
1 – прослеживается	1 – прослеживается.					

2.5. Методические материалы

Список литературы

- 1. Соммер Улли. Источники Программирование информации микроконтроллерных плат Arduino/Freeduino, СПб.: БХВ-Петербург, 2013. 256 с.
- 2. Том Иго. Arduino, датчики и сети для связи устройств. СПб.: БХВ-Петербург, 2015. 544с.
- 3. Липпман Стенли, Лажойе Жози, Му Барбара. Язык программирования C++. Базовый курс, 5-е издание, М.: Вильямс, 2017. 1120с.
- 4. Роббинс Д. Н. HTML5, CSS3 и JavaScript. Исчерпывающее руководство, М.: Эксмо, 2014. 528с.
- 5. Лутц М. Изучаем Python, 4-е издание. Пер. с англ. СПб.: Символ-Плюс, 2011. –1280 с., ил.

Список литературы для учащихся и родителей

- 1. Хофман Михаэль. Микроконтроллеры для начинающих, СПб.: БХВ-Петербург, 2014.-304c.
- 2. Петин В.В., Биняковский А.А. Практическая энциклопедия Arduino, М.: ДМК Пресс, 2016. 152с.
- 3. Браун Этан. Изучаем JavaScript. Руководство по созданию современных веб-сайтов, М.: Альфа-книга, 2017. 368с.

Цифровые образовательные ресурсы

- 1. Программирование Ардуино. Режим доступа:http://www.arduino.ru/Reference.
- 2. Теоретический материал по работе с датчиками компании «Амперка». Режим доступа: http://wiki.amperka.ru/

Приложение 1

Календарный учебный график по внеурочной программе «Робототехника » Количество часов: всего -136 часа, 2 раз в неделю по 2 часа.

№	Месяц	Число	Форма	Кол-	Тема занятия	Форма
п/п			занятия	во		контроля
				часов		
1			Теория	1	Знакомство. Инструктаж по	Опрос
					технике безопасности.	
2			Комбинированн	8	Манипулятор с L-образной	Внутренний
			ая(сочетание		стрелой	контроль/опрос/
			теории и			наблюдение
			практики).			
3			Комбинированн	8	Манипулятор с Z-образной	Внутренний
			ая(сочетание		стрелой	контроль/наблюдение
			теории и			
			практики).			
4			Комбинированн	8	Комбинированный	Внутренний
			ая(сочетание		манипулятор	контроль/тест
			теории и			конструкций
			практики).			
5			Комбинированн	6	Рука манипулятор	Внутренний
			ая(сочетание			контроль/наблюдение
			теории и			
			практики).			
6			Комбинированн	6	Рука манипулятор	Внутренний
			ая(сочетание			контроль/тест
			теории и			конструкций
			практики).			
7			Комбинированн	8	Шагающий робот	Внутренний контроль/

	ая(сочетание теории и практики).			опрос
8	Комбинированн ая(сочетание теории и практики).	8	Принтер	Внутренний контроль/тест
9	Комбинированн ая(сочетание теории и практики).	8	Простой автомобиль	Внутренний контроль/отчет
10	Комбинированн ая(сочетание теории и практики).	8	Игра	Внутренний контроль/тест конструкций
11	Комбинированн ая(сочетание теории и практики).	10	Машина для определения цвета и размера балки.	Внутренний контроль/тест конструкций
12	Комбинированн ая(сочетание теории и практики).	8	Оружие	Внутренний контроль/тест
13	Комбинированн ая(сочетание теории и практики).	10	Сейф_1	Внутренний контроль/наблюдение
14	Комбинированн ая(сочетание	10	Сейф_2	Внутренний контроль/тест

	теории и практики).		конструкций
15	Комбинированн 10 ая(сочетание теории и практики).	0 Коробка передач	Внутренний контроль/наблюдение/о тчет
16	Комбинированн 10 ая(сочетание теории и практики).	0 Автомобиль_1	Внутренний контроль/тест конструкций
17	Комбинированн 10 ая(сочетание теории и практики).	0 Автомобиль_2	Внутренний контроль/отчет